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8.1 Introduction

The adaptive resonance theory (ART) has been developed to avoid the stability-plasticity
dilemma in competitive networks learning. The stability-plasticity dilemma addresses
how a learning system can preserve its ipiesly learned knowledge while keeping its
ability to learn new patterns. ART architectumedels can self-organize in real time pro-
ducing stable recognition while getting input patterns beyond those originally stored.

ART is a family of different neural arttkbctures. The first and most basic architec-
ture is ART1 (Carpenter and Grossberg, 1987). ART1 can learn and recognize binary
patterns. ART2 (Carpenter and Grossbeff7) is a class of arithctures categorizing
arbitrary sequences of analog input patteART is used in modeling such as invariant
visual pattern recognition (Carpenter et1889) where biologicakquivalence is dis-
cussed (Carpenter and Grossberg 1990).

An ART system consists of two subsystems, an attentional subsystem and an orient-
ing subsystem. The stabilization of learning and activation occurs in the attentional sub-
system by matching bottom-up input activation and top-down expectation. The orienting
subsystem controls the attentional subsystem when a mismatch occurs in the attentional
subsystem. In other words, the orienting subsystem works like a novelty detector.

An ART system has four basic properties. The first is the self-scaling computational
units. The attentional subsystem is based on competitive learning enhancing pattern fea-
tures but suppressing noise. The secondlfisadpisting memory search. The system can
search memory in parallel and adaptively chaitgygearch order. Third, already learned
patterns directly access theirr@sponding category. Finallthe system can adaptively
modulate attentional vigilance using thevieonment as a teacher. If the environment
disapproves the current recognition of the system, it changes this parameter to be more
vigilant.

There are two models of ART1, a slow-learning and a fast-learning one. The slow
learning model is described by in terms of differential equations while the fast learning
model uses the results of convergence in the slow learning model. In this chapter we will
not show a full implementation on ART1, instead an implementation of the fast learning
model will be more efficient and sufficient to show the ART1 architecture behavior.

8.2 Model Description

ARTL1 is the simplest ART learning model specifically designed for recognizing binary
patterns. The ART1 system consists of #Hardional subsystem and an orienting subsys-
tem as shown in figure 8.1.
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The attentional subsystem consists of two competitive networks, the comparison
layerF1 and the recognition lay&2, and two control gains, Gain 1 and Gain 2. The ori-
enting subsystem contains the reset layer for controlling the attentional subsystem overall
dynamics.

The comparison layer receives the binariemal input passing tb the recognition
layer responsible for matching it to a classification category. This result is passed back to
the comparison layer to find out if the categaratches that of the input vector. If there
is a match a new input vector is read andciywe starts again. If there is a mismatch the
orienting system is in charge of inhibiting the previous category in order to get a new
category match in the recognition layer. The two gains control the activity of the recog-
nition and comparison layer, respectively.

A processing elemen; in layerF1 is shown in figure 8.2.

To F2 Figure 8.2
From F2 A processing unit x,.in F1
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The excitatory input tog; in layer F1 comes from three sawes: (1) the external
input vectorl;, (2) the control gairs;and (3) the internal network inp\; made of the
output fromF2 multiplied appropriateonnections weights. There is no inhibitory input
to the neuron. The output of the neuron is fed toRhdayer as well as the orient sub-
system.
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A processing elemeny; in layerF2 is shown in figure 8.3.
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The excitatory input tay in F2 comes from three sourcgg) the orient subsystem,

(2) the control gairs; and (3) the internal network inpuf; made of the output froil
multiplied appropriate connections weights. There is no inhibitory input to the neuron.
The output of the neuron is fed to the layer as well as the Gain 1 control.

The original dynamic equations (Carpenter and Grossberg 1987) handle both binary
and analog computations. We shall concentrate here on the binary model. Processing in
ART1 can be divided into four phases, (1) recognition, (2) comparison, (3) search, and
(4) learning.

Recognition
Initially, in the recognition or bottom-up activation, no input vedtsr applied disabling
all recognition inF2 and making the two control gaing; andG,, equal to zero. This
causes alF2 elements to be set to zero, givitigem an equal chance to win the subse-
quent recognition competition. When an input vector is applied one or more of its compo-
nents must be set to one thereby making BatandG, equal to one.

Thus, the control gaifs; depends on both the input vectaand the outpuX, from
F2,

O if | #0andX, =0
G = . (8.1)
otherwise
In other words, if there is an input vectoandF2 is not actively producing output,
thenG; = 1. Any other combination of activity drandF2 would inhibit the gain control
from exciting units orF1.
On the other hand, the outp@t of the gain control module depends only on the

input vector,

o ifl1£0

= 8.2
2 %) otherwise 6.2

In other words, if there ésts an input vector the@, = 1 and recognition 2 is
allowed.

Each nodeén F1 receiving a nonzero input value generates an STM pattern activity
greater than zero and the node’s output is an exact duplicate of input vector. Since both
Xz andl; are binary, their values would be either 1 or 0,

X =1, if Gl =1 (8.3)
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Each node i1 whose activity is beyond the threshold sends excitatory outputs to
the F2 nodes. Thd-1 output patterrX; is multiplied by the LTM trace8V;, connecting
from F1 to F2. Each node ifr2 sums up all its LTM gated signals

Vo = z Xy Wizii (8.4)
I

These connections represehé input pattern classifiian categories, where each
weight stores one category. The outiiytis defined so that the element that receives the
largest input should be clearly enhanced. As such, the competitive né@vaudrks as a
winner-take-all network described by.

Ol if G, =1nVy = mka>{V2k} Ok

. (8.5)
otherwise

The F2 unit receiving the largedtl output is the one that best matches the input
vector category, thus winning the competition. H2ewinner node fires, having its value
set to one, inhibiting all other nodes in the layer resulting in all other nodes being set to
zero.

Comparison

In the comparison or top-down template matching, the STM activation pxftemF2
generates a top-down template leh This pattern is multiplied by the LTM track,
connecting fron2 to F1. Each node ifr1 sums up all its LTM gated signals

Vy = z X Wy (8.6)
]

The most active recognition unit froR2 passes a one back to the comparison layer
F1. Since the recognition layer is now acti@,is inhibited and its output is set to zero.

In accordance witlthe “2/3” rule, stating that from theedifferent input sources at
least two are required to be active in order to generate an excitatory output, the only com-
parison units that will fire are those that receive simultaneous ones from the input vector
and the recognition layer. Units naiceiving a top down signal froFf2 must be inactive
even if they receive input from b&lo This is summarized as follows

X]J-:Dl i NV .—1 @.7)

otherwise

If there is a good match between the top-down template and the input vector, the sys-
tem becomes stable and learning may occur.

If there is a mismatch between the inputtee and the activity coming from the rec-
ognition layer, this indicates that the pattern being returned is not the one desired and the
recognition layer should be inhibited.

Search
The reset layer in the orienting subsystem measures the similarity between the input
vector and the recognition layer output pattern. If a mismatch between them, the reset
layer inhibits theF2 layer activity. The orienting systantompares the frut vector to
the F1 layer output and causes a reset signal if their degree of similarity is less than the
vigilance level, wher@ s the vigilance parameter setas p < 1.

The input pattern mismatch occurs if the following inequality is true,

p< % (8.9

160 CHAPTER 8



If the two patterns differ by more than the vigilance parameter, a reset signal is sent
to disable the firing unit in the recognition lay&2. The effect of the reset is to force the
output of the recognition layer back to zero, disabling it for the duration of the current
classification in order toemrch for a better match.

The parametep determines how large a mismatch is tolerated. A large vigilance
parameter makes the system to search farcstegories in response to small difference
betweenl andX, learning to classify input patterns into a large number of finer catego-
ries. Having a small vigilaze parameter allows for larger differences and more input
patterns are classified into the same category.

When a mismatch occurs, the total inhibitory signal fféhto the orienting subsys-
tem is increased. If the inhibition is suffictetthe orienting subsystem fires and sends a
reset signal. The activated signal affectsRenodes in a state-depdent fashion. If an
F2 node is active, the signal through a natdbm known as gated dipole field causes a
long-lasting inhibition.

When the activé-2 node is suppressed, the top-down output paXe@and the top-
down templaté/; are removed and the formiet activation patteriX; is generated again.
The newly generated pattexa causes the orienting subsystéo cancel the reset signal
and bottom-up activation starts again. Sif& nodes having fired receive the long-
lasting inhibition, a differenF2 unit will win in the recognition layer and a different
stored pattern is fed back to the comparitayer. If the patterronce again does not
match the input, the whole process gets repeated. .

If no reset signal is generated this time, the match is adequate and the classification
is finished.

The above three stages, tligt recognition, comparisgrand search, are repeated
until the input pattern matches a top-down tempfateOtherwise &2 node that has not
learned any patterns yet is activated. In the latter case, the didsede becomes a
learned new input pattern recognition category.

Learning
The above three stages takaqal very quickly relative to theme constants of the learn-
ing equations of the LTM traces betweEfh and F2. Thus, we can assume that the
learning occurs only when the STM reset aadrch process end and all STM patterns on
F1 andF2 are stable.

The LTM traces fron¥1 to F2 follow the equation

E(l—ij )L—W12ij QX1|—1) if Vi andvy; areactive
AW 5 _ O . . .
n—y O - X4 Waz if onlyVy; isactive (8.9
E 0 if onlyV;; isinactive

wherer; is the time constant ardis a parameter with a valgreater than one. Because
time constant is sufficiently larger than the SThdctivation and smaller than the input

pattern presentation, the above is a slearriing equation that converges in the fast
learning equation

g; if Vy; andv;; areactive
Ok —1+[Xy|
Wi =0 O if onlyVy; isactive (8.10)
Enochange if onlyV,; isinactive
0
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The initial values folV,z; must be randomly chosen while satisfying the inequality
L

0 <Wpi < ———— 8.11
12ij L _ 1+ |M | ( )
whereM is the input pattern dimension equal to the number of nodek in
The LTM traces fronk2 to F1 follows the equation,
dW,;;
P = X, (Wagy + Xy (8.12)

where T, is the time constant and the equation is defined to converge during a presenta-
tion of an input pattern. Thus, the fast learning equation of th&/fgris

L if Vy andv;; areactive

2 %) if onlyV; isinactive (6.13)

The initial value foMky; must be randomly chosen to satisfy the inequality
1= W2:Lji(0) >C (8.14)

whereC is decided by the slow learning equation parameters. Howev,,;5(0) may
be set 1 in the fast learning case.

Theorems

The theorems describing ART1 behavior are described next with proofs given in Carpen-
ter and Grossberg (1987). These theorems hold in the fast learning case with initial LTM
traces satisfying constraints (10) and (14)pdfameters are properly set, however, the
following results also hold in the slow learning case.

(Theorem 1) Direct Access of Learned Patterns
If an F2 node has already learned input patieas its template, then input pattéracti-
vates thé=2 node at once.

The theorem states that a pattern ted been perfectly memorized by & node
activates the node immediately.

(Theorem 2) Stable Category Learning

This theorem guarantees that the LTM tradgs; andW,y; become stable after a finite
number of learning trials in response to an arbitrary list of binary input pattern¥yThe
template corresponding to tjth F2 node remains constant after at mdst times.

In stable states, the LTM trac@,; becomel/(L-1+M) if the ith element of the top-
down template corresponding to tjite F2 node is one. Otherwise, it is zero. The LTM
tracesW,y;; become one if théth element of the template of corresponding tojthé-2
node is one. Otherwise, it is zero.

However, theorem 2 doesnt guarantee that a perfectly coded input patterirBy an
node will be coded by the sar®@ node after presentation. TR node may forget the
input pattern in successive learning, though the template é2inede continues to be a
subset of the input pattern.

(Theorem 3) Direct Access after Learning Stabilizes

After learning has stabilized in response to an arbitrary list of binary input patterns, each
input patternl either directly activates th€2 node which possesses the largest subset
template with respect 19 or | cannot activate any2 node. In the latter casgé2 contains

no uncommitted nodes.
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This theorem guarantees that a memorized pattern activaksrantle at once after
learning and that alF2 nodes have been already committed if any input patterns cannot
be coded. If an input pattern list contains many different input patterns2aodntains
fewer nodes, all input patterns cannot be coded pvitlose to 1.

However, the theorem doesnt guarantee #imainput pattern having activated B2
node during learning should have been coded. If there are many input patterns with
respect to the number &2 nodes, input patterns which have small¢f tend to be
coded while input patterns with largexy] tend to be coded by their subsets or not coded
at all after learning.

8.3 Model Implementation

The complete model incorporates the Attentional and Orient Subsystem into a&Asingle
module, as shown in figure 8.4, together with AméM odel instantiating theArt module
with the appropriate sizes for its layers.

Art Figure 8.4
ART module containing the F2
" and F2 submodules incorpo-
Recognition ) . .
olin 2 rating the functionality of both
X s the Attentional and Orienting
subsystems.
—
matX
S5 X
o in Comparison
f1
matl

Art Module
Due to the limited process complexity of some of the components of the model only two
submodule$-1 andF2 are defined within the Art module. These two submodules corre-
spond to layers1 and F2 in the Attentional subsystem and include their respective
gains. Also considering the simplicity of thaenting subsystem structures, it is incorpo-
rated directly into module F1.

Every simulation run initialization, corresponding to the beginning of a new epoch, a
new input pattern is sent to the F1 and F2 input vector part§ince the input ports in
is a vector andmat | is a matrix we do a corresponding conversion between the two.

public void initRun() {
matri xToVector(matl,in);

}

After completing a simulation run tleedRun method is called, in this case we want
to update tharat X array in order to display to the user the letter output in a visually
appropriate form.

public void endRun() {
vect or ToMat ri x(x, mat X) ;
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Comparison Module

The Comparison module contains the cqroesling data structure for the F1 layer
including gain 1. Input layes and activity layex are both initialized to 0 while weights
are initialized 1.0. This is all done in tleitModule method. ThenitTrain method
resets the active elements. Simuatprocessing is specified in teenTrain method as
follows

public void sinTrain() {

if (resetActive == 1) { // input vector Gl condition, eq
(8.1)
reset Active = 0;
active = -1;
X = in;

}
else { // eq (8.7)
if (s.nslMax() > 0)
s. nsl Max(acti ve);
v = w's; // eq (8.6)
/1 this is a step function: x=nsl Step(in+s, 1.99)

for (int i = 0;i <in.getSize();i++) {
if (in[i] + v[i] >= 1.99)
x[i] = 1.0;
el se
x[i] = 0.0;
}

}

This module executes the bottom-up activation, the top-down template matching, and the
STM reset and search. The activation cycle is repeated until matching is complete.

After running a complete simulation for a single patternetidTrain method gets
called. The module changes the LTM traces &1i@ F21 after the system reaches stable
responding to an input pattern. This nfadi bottom-up and top-down traces F12 and
F21 by the fast learning equations. The LTM learning module may be turned off when
learning is unnecessary.

public void endTrain() {
s. nsl Max(active); // eq. (8.9)

for (int i = 0;i < wgetRows();i++) {
if (x[i] == 1.0)
wi][active] = 1.0;
el se

wi][active] 0. 0;

Recognition Module
The Recognition module contains the corresponding data structures for the F2 layer.
Simulation variables are initialized in th@tM odule method as follows:
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public void initMdule() {
/1 initialization of all LTM weights // eq (8.10)

float max_value = |.getData()/(l.getData() - 1.0 +
in. getSize());
for (int xi = 0; xi < w. getRows(); xi++) {

for (int yi =0; yi <wagetCols(); yi++) {
W xi][yi] = unifornmRandon(fl oat (0.0), nax_val ue);

}

TheinitTrain method resets the active elements. Simulation processing is specified
in thesimTrain method where LTM traces are multipli¢al the input from F1 and F2
activationx is computed. The F2 unit that receitles biggest input from F1 that has not
been reset is activated whtlee other units are deactivated.

public void sinfTrain() {

if (s.nslSum() / in.nslSum() < rho.getData()) { // eq (8.8)
resetYactive] = -1.0;
active = -1;

}

if (active >= 0) {
nsl Println(“Matching is passed”);
system breakCycl e();
return;

}

v = w's; // eq (8.6)

numtype maxval ue;

i nt i
active = -1;
x = 0.0;
float BIGMNUS = -1.0; // the smallest value in this
progr am
/'l To exclude units which have been already reset
for (i = 0;i <resetY.getSize();i++) {

if (resetY[i] ==-1.0) {

v[i] = BIG_MNUS;

}

}

I/ search for the unit which receives maxi mum i nput
maxval ue = v.nsl Max();
/1 In the case that there is no available unit
if (maxvalue == BIG MNUS) {
active = -1;
nsl Print(“An error has occured”);
system breakCycl e();
return;
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/1 To find the maxi muminput // eq (8.5)
for (i = 0;i <v.getSize();i++) {
if (v[i]l] == maxval ue) ({
x[i] = 1.0;
active = i;
br eak;

}

/'l For the error

if (i >= v.getSize()) {
nslPrintln(“An error has occured”);
system breakCycl e();
return;

}

if (active < 0) {
nslPrintln(“There are no available units”);
system breakCycl e();
return;

}

After running a complete simulation for a single patternetdlrain method gets
called.

public void endTrain() {
nsl Println(“Top-Down Tenplate Unit:” ,active);
if (active < 0) {
nslPrintln(“There are no units for this input”);
system breakCycl e();

return;
}
float val =1.getData() / (l.getData() - 1.0 + s.sun()); //
eq (8.11)
for (int i =0, i <wgetCols(); i++) {
if (s[i] == 1.0)
wactive][i] = val;
el se
w active][i] = 0.0;
}

}

8.4 Simulation and Results’

The ART1 model simulation will be illustrated with character recognition example
(Carpenter and Grossberg, 1987). The NSLS command file ART1.nsls contains NSL

command to set parameters and prepare graphiesparameters to be set are only the

vigilance parameter and the weight initialization parameter besides the usual simulation

steps specification.

nsl set art.f2.rho 0.7
nsl set art.f2.1 2.0

The system may run without learning by setting the epoch steps to 0.
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A window frame with two windows inside corresponding to the input vectoFand

activation patterrx, both shown as a square pattenre opened in the simulation. A sec-
ond frame with a single windoshows the F2 activation patte¥a The latter layer is
shown as a vector representingraup of classified categories.

Execution
A typical ART1 simulation session is as follows;

1. Loading ArtModel.nd: “nsl source artModel.nsl.”
2. Initialization: Execute the NSL command “nsl ifiiThis initializes LTM traces and
variables.
3. Setting character: Characters may be interactivelydféy the user or read from a
script file. For example read the “nslusoe patll.nsl” file for a single letter.
4. Activation and Learning: Type “nsl train” to train a&ingle cycle of the Art model.
After either the maximum number of simulation steps are execut¥g siabilizes,
endTrain is executed. Learning may be disabled, only by setting the epoch step
number to 1.
| | | | ) Vv v Figure 8.5
Input 1 2 8 4 Active 1 2 Four two-dimensional 5 by 5
(h, L, I;and /,) patterns are
1 v, n presented to the ART1 system.
The correct output is specified
by the active V element.
2 I I V, I I
- F ] =
4 F I V, I I n
5 r.rA
: F1 - FF
7 n V, I F I
Output

We give a simple simulation example in théction. Four input patterns are presented to
the model for a total of seven times. The input patternd;2h@odes activated by them,
and top-down templatef the activated2 nodes are shown in figure 8.5.

5.

An input pattern; is given in the first presentation. Because no patterns have been
memorized yet, the input pattern is completely learned y2aroden; and the top-
down template ofi; is |, after learning.

An input patterr, is then given. Becaudegis a subset offy, |, directly activates the
sameF2 nodeny, andl, becomes a new templatergf
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7. The input pattert, is presented again in the third trial. TF2noden;, is activated at
first, but it is reset because its template patterand the input patterh are very
different. Thus, anothd¥2 noden, is activated andj becomes its template.

8. An input patternl; is given in the fourth presentation. Thougtooks closer td;
thanl,, |; directly accesses; and the activated pattern &1 is |,. The top-down
template oh; doesnt change and it is stijl

9. The next input patterh, activatesn; because, is a subset of the current template
of n,. Then, the template of becomed, instead of .

10. Next, the input patterh; is given again. It activates at first, but it is reset because
its current templaté, andl; are very different. Thudz activates thd=2 noden, at
the second search, and it becomes the template of the node.

11. Finally, the input patteriy is given again. It directly activates th& noden, and the
activated pattern oR1 is 3.

The NSL simulation displays for théelements are shown in figure 8.6.

Figure 8.6

— Velements in the recognition
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ I ‘ I ‘ module of the ART1 system.

The NSL simulation displays comparing the letter input to the corresponding output
is shown in figure 8.7. The above example illustrates some of the features of the model:

An F2 node that memorizes an input pattern will not necessarily keep memorizing it.
Though the F2 node n1 first memorizes the input pattern I1 in the above simulation,
for example, the node doesn’t respond tinlthe final presentation. This means that
the final stable state of the model nisgylargely different from early stages.

Simpler patterns which have smaller |I|'s tend to be learned. Thus, when the number
of the F2 nodes are limited, complex patterns may not be learned. Skilled adjustment
of a vigilance parameter is indispensable for balanced learning.

The criterion to classify input patterns is not intuitive. For example, the input pattern
I3 is judged closer to 12 than I1.

The previous top-down template n presented as an input pattern is not necessarily the
final activation pattern on F1. This means that the model cannot restore pixels erased
by noise though it can remove pixels added by noise.

These features may be flawstbé model, but they can be taken also as good points.

8.5 Summary

Though we chose a simplified way to simulate ART1 on NSL, some interesting features
of ART1 have been made clear. Different extensions can be made to the NSL implemen-
tation of ART1:

The first extension would be a full implementation of ART1 original dynamic equa-
tions, in particular the inclusion of membrane potential equatioRr& ahdF2 nodes

and the slow learning equations.

The second extension would be to improve ART1. Some features present in our
simulation are not desirable for many applications. We believe some improvements
of the learning equations and matching rules would extend to further applications
while keeping the basistructure of ART.
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The third extension would be the implementation of other ART models. ART is a
theory applying to many models, such as ART2, FUZZY-ART (Carpenter et al 1991),
besides various practical applications.

A good exercise here would be to use kheximum Selector model instead of the
simple WTA used in ART.

aftl_pattenms Figure 8.7
Al _padems input orf]_pafedns. oulgid Sample letter input and output

Notes

1. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by T. Tanaka as well as contributed Section 8.3 and part of
Section 8.4 to this chapter.

2. The Art model was implemented and tested under NSLC.
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