

8 Adaptive Resonance Theory
T. Tanaka and A. Weitzenfeld1

8.1 Introduction
The adaptive resonance theory (ART) has been developed to avoid the stability-plasticity
dilemma in competitive networks learning. The stability-plasticity dilemma addresses
how a learning system can preserve its previously learned knowledge while keeping its
ability to learn new patterns. ART architecture models can self-organize in real time pro-
ducing stable recognition while getting input patterns beyond those originally stored.

ART is a family of different neural architectures. The first and most basic architec-
ture is ART1 (Carpenter and Grossberg, 1987). ART1 can learn and recognize binary
patterns. ART2 (Carpenter and Grossberg, 1987) is a class of architectures categorizing
arbitrary sequences of analog input patterns. ART is used in modeling such as invariant
visual pattern recognition (Carpenter et al 1989) where biological equivalence is dis-
cussed (Carpenter and Grossberg 1990).

An ART system consists of two subsystems, an attentional subsystem and an orient-
ing subsystem. The stabilization of learning and activation occurs in the attentional sub-
system by matching bottom-up input activation and top-down expectation. The orienting
subsystem controls the attentional subsystem when a mismatch occurs in the attentional
subsystem. In other words, the orienting subsystem works like a novelty detector.

An ART system has four basic properties. The first is the self-scaling computational
units. The attentional subsystem is based on competitive learning enhancing pattern fea-
tures but suppressing noise. The second is self-adjusting memory search. The system can
search memory in parallel and adaptively change its search order. Third, already learned
patterns directly access their corresponding category. Finally, the system can adaptively
modulate attentional vigilance using the environment as a teacher. If the environment
disapproves the current recognition of the system, it changes this parameter to be more
vigilant.

There are two models of ART1, a slow-learning and a fast-learning one. The slow
learning model is described by in terms of differential equations while the fast learning
model uses the results of convergence in the slow learning model. In this chapter we will
not show a full implementation on ART1, instead an implementation of the fast learning
model will be more efficient and sufficient to show the ART1 architecture behavior.

8.2 Model Description
ART1 is the simplest ART learning model specifically designed for recognizing binary
patterns. The ART1 system consists of an attentional subsystem and an orienting subsys-
tem as shown in figure 8.1.

1 5 8 C H A P T E R 8

Gain2

Gain1

Recognition
Layer F2

Comparison
Layer F1

I

Attentional Subsystem Orienting
Subsystem

Reset

+

+

+

+

++

+

+ +

Figure 8.1 �
ART1 consists of an atten-
tional subsystem and an
orienting subsystem. The
attentional subsystem has two
short term memory (STM)
stages, F1 and F2. Long term
memory (LTM) traces
between F1 and F2 multiply
the signal in these pathways.
Gain control signals enable
F1 and F2 to distinguish
current stages of a running
cycle. STM reset wave inhib-
its active F2 cells when mis-
matches between bottom-up
and top-down signals occur
at F1.

The attentional subsystem consists of two competitive networks, the comparison
layer F1 and the recognition layer F2, and two control gains, Gain 1 and Gain 2. The ori-
enting subsystem contains the reset layer for controlling the attentional subsystem overall
dynamics.

The comparison layer receives the binary external input passing it to the recognition
layer responsible for matching it to a classification category. This result is passed back to
the comparison layer to find out if the category matches that of the input vector. If there
is a match a new input vector is read and the cycle starts again. If there is a mismatch the
orienting system is in charge of inhibiting the previous category in order to get a new
category match in the recognition layer. The two gains control the activity of the recog-
nition and comparison layer, respectively.

A processing element x1i in layer F1 is shown in figure 8.2.

Unit x1i

From F2
To F2

To Orient

From Gain1

X1i

Ii

V1i

G1

Figure 8.2 �
A processing unit x1i in F1
receives input from: pattern Ii,
gain control signal G1 and V1i
equivalent to output X2j from
F2 multiplied by interconnec-
tion weight E21ij. The local
activity serving also as unit
output is X1i.

The excitatory input to x1i in layer F1 comes from three sources: (1) the external
input vector Ii, (2) the control gain G1and (3) the internal network input V1i made of the
output from F2 multiplied appropriate connections weights. There is no inhibitory input
to the neuron. The output of the neuron is fed to the F2 layer as well as the orient sub-
system.

A D A P T I V E R E S O N A N C E T H E O R Y 1 5 9

A processing element x2j in layer F2 is shown in figure 8.3.

Unit x2 j

From F1

From Orient

X2 j

V2 j

From Gain2

G2

To all F2: WTA

Figure 8.3��

A processing element x2j in
F2 receives input from: gain
control signal G2 and V2j
equivalent to output X1i from
F1 multiplied by intercon-
nection weight W12ji. The
local activity is also the unit
output X2j.

The excitatory input to x2j in F2 comes from three sources: (1) the orient subsystem,
(2) the control gain G2 and (3) the internal network input V2j made of the output from F1
multiplied appropriate connections weights. There is no inhibitory input to the neuron.
The output of the neuron is fed to the F1 layer as well as the Gain 1 control.

The original dynamic equations (Carpenter and Grossberg 1987) handle both binary
and analog computations. We shall concentrate here on the binary model. Processing in
ART1 can be divided into four phases, (1) recognition, (2) comparison, (3) search, and
(4) learning.

Recognition
Initially, in the recognition or bottom-up activation, no input vector I is applied disabling
all recognition in F2 and making the two control gains, G1 and G2, equal to zero. This
causes all F2 elements to be set to zero, giving them an equal chance to win the subse-
quent recognition competition. When an input vector is applied one or more of its compo-
nents must be set to one thereby making both G1 and G2 equal to one.

Thus, the control gain G1 depends on both the input vector I and the output X2 from
F2,



 =≠

=
otherwise0

0 and 0 if1 2
1

XI
G (8.1)

In other words, if there is an input vector I and F2 is not actively producing output,
then G1 = 1. Any other combination of activity on I and F2 would inhibit the gain control
from exciting units on F1.

On the other hand, the output G2 of the gain control module depends only on the
input vector I,



 ≠

=
otherwise0

 0 if1
2

I
G (8.2)

In other words, if there exists an input vector then G2 = 1 and recognition in F2 is
allowed.

Each node in F1 receiving a nonzero input value generates an STM pattern activity
greater than zero and the node’s output is an exact duplicate of input vector. Since both
X1i and Ii are binary, their values would be either 1 or 0,

X1 = I, if G1 = 1 (8.3)

1 6 0 C H A P T E R 8

Each node in F1 whose activity is beyond the threshold sends excitatory outputs to
the F2 nodes. The F1 output pattern X1 is multiplied by the LTM traces W12 connecting
from F1 to F2. Each node in F2 sums up all its LTM gated signals

∑=
i

jiij WXV 1212 (8.4)

These connections represent the input pattern classification categories, where each
weight stores one category. The output X2j is defined so that the element that receives the
largest input should be clearly enhanced. As such, the competitive network F2 works as a
winner-take-all network described by.

{ }


 ∀=∩=

=
otherwise0

k max 1 if1 22j2
2

k
kj

VVG
X (8.5)

The F2 unit receiving the largest F1 output is the one that best matches the input
vector category, thus winning the competition. The F2 winner node fires, having its value
set to one, inhibiting all other nodes in the layer resulting in all other nodes being set to
zero.

Comparison
In the comparison or top-down template matching, the STM activation pattern X2 on F2
generates a top-down template on F1. This pattern is multiplied by the LTM traces W12

connecting from F2 to F1. Each node in F1 sums up all its LTM gated signals

∑=
j

ijji WXV 2121 (8.6)

The most active recognition unit from F2 passes a one back to the comparison layer
F1. Since the recognition layer is now active, G1 is inhibited and its output is set to zero.

In accordance with the “2/3” rule, stating that from three different input sources at

least two are required to be active in order to generate an excitatory output, the only com-
parison units that will fire are those that receive simultaneous ones from the input vector
and the recognition layer. Units not receiving a top down signal from F2 must be inactive
even if they receive input from below. This is summarized as follows



 =∩

=
otherwise0

11 1
1

ii
i

VI
X (8.7)

If there is a good match between the top-down template and the input vector, the sys-
tem becomes stable and learning may occur.

If there is a mismatch between the input vector and the activity coming from the rec-
ognition layer, this indicates that the pattern being returned is not the one desired and the
recognition layer should be inhibited.

Search
The reset layer in the orienting subsystem measures the similarity between the input
vector and the recognition layer output pattern. If a mismatch between them, the reset
layer inhibits the F2 layer activity. The orienting systems compares the input vector to
the F1 layer output and causes a reset signal if their degree of similarity is less than the
vigilance level, where ρ is the vigilance parameter set as 0 < ρ ≤ 1.

The input pattern mismatch occurs if the following inequality is true,

I

X1<ρ (8.8)

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 1

If the two patterns differ by more than the vigilance parameter, a reset signal is sent
to disable the firing unit in the recognition layer F2. The effect of the reset is to force the
output of the recognition layer back to zero, disabling it for the duration of the current
classification in order to search for a better match.

The parameter ρ determines how large a mismatch is tolerated. A large vigilance
parameter makes the system to search for new categories in response to small difference
between I and X2 learning to classify input patterns into a large number of finer catego-
ries. Having a small vigilance parameter allows for larger differences and more input
patterns are classified into the same category.

When a mismatch occurs, the total inhibitory signal from F1 to the orienting subsys-
tem is increased. If the inhibition is sufficient, the orienting subsystem fires and sends a
reset signal. The activated signal affects the F2 nodes in a state-dependent fashion. If an
F2 node is active, the signal through a mechanism known as gated dipole field causes a
long-lasting inhibition.

When the active F2 node is suppressed, the top-down output pattern X2 and the top-
down template V1 are removed and the former F1 activation pattern X1 is generated again.
The newly generated pattern X1 causes the orienting subsystem to cancel the reset signal
and bottom-up activation starts again. Since F2 nodes having fired receive the long-
lasting inhibition, a different F2 unit will win in the recognition layer and a different
stored pattern is fed back to the comparison layer. If the pattern once again does not
match the input, the whole process gets repeated. .

If no reset signal is generated this time, the match is adequate and the classification
is finished.

The above three stages, that is, recognition, comparison, and search, are repeated

until the input pattern matches a top-down template X1. Otherwise a F2 node that has not
learned any patterns yet is activated. In the latter case, the chosen F2 node becomes a
learned new input pattern recognition category.

Learning
The above three stages take place very quickly relative to the time constants of the learn-
ing equations of the LTM traces between F1 and F2. Thus, we can assume that the
learning occurs only when the STM reset and search process end and all STM patterns on
F1 and F2 are stable.

The LTM traces from F1 to F2 follow the equation

() ()







 −−−
=

inactive is only if0

active is only if-

active are and if11

1

1121

1111212
12

1

j

jij

jiijij
ij

V

VWX

VVXWLW

dt

dW
τ (8.9)

where τ1 is the time constant and L is a parameter with a value greater than one. Because
time constant τ is sufficiently larger than the STM activation and smaller than the input
pattern presentation, the above is a slow learning equation that converges in the fast
learning equation












+−

=
inactive is only ifchange no

active is only if0

active are and if
1

1

1

11
1

12

j

j

ji

ij

V

V

VV
XL

L

W (8.10)

1 6 2 C H A P T E R 8

The initial values for W12ij must be randomly chosen while satisfying the inequality

0 < W12ij <
ML

L

+−1
 (8.11)

where M is the input pattern dimension equal to the number of nodes in F1.

The LTM traces from F2 to F1 follows the equation,

()ijij
ji

XWX
dt

dW
1212

21
2 +−=τ (8.12)

where τ2 is the time constant and the equation is defined to converge during a presenta-
tion of an input pattern. Thus, the fast learning equation of the for W21ji is





=
inactive is only if0

active are and if1

1

11
21

i

ji
ji V

VV
W (8.13)

The initial value for W21ji must be randomly chosen to satisfy the inequality

1 ≥ W21ji(0) > C (8.14)

where C is decided by the slow learning equation parameters. However, all W21ji(0) may
be set 1 in the fast learning case.

Theorems
The theorems describing ART1 behavior are described next with proofs given in Carpen-
ter and Grossberg (1987). These theorems hold in the fast learning case with initial LTM
traces satisfying constraints (10) and (14). If parameters are properly set, however, the
following results also hold in the slow learning case.

(Theorem 1) Direct Access of Learned Patterns
If an F2 node has already learned input pattern I as its template, then input pattern I acti-
vates the F2 node at once.

The theorem states that a pattern that has been perfectly memorized by an F2 node
activates the node immediately.

(Theorem 2) Stable Category Learning
This theorem guarantees that the LTM traces W12ij and W21ji become stable after a finite
number of learning trials in response to an arbitrary list of binary input patterns. The V1j
template corresponding to the jth F2 node remains constant after at most M-1 times.

In stable states, the LTM traces W12ij become L/(L-1+M) if the ith element of the top-
down template corresponding to the jth F2 node is one. Otherwise, it is zero. The LTM
traces W21ji become one if the ith element of the template of corresponding to the jth F2
node is one. Otherwise, it is zero.

However, theorem 2 doesn’t guarantee that a perfectly coded input pattern by an F2
node will be coded by the same F2 node after presentation. The F2 node may forget the
input pattern in successive learning, though the template of the F2 node continues to be a
subset of the input pattern.

(Theorem 3) Direct Access after Learning Stabilizes
After learning has stabilized in response to an arbitrary list of binary input patterns, each
input pattern I either directly activates the F2 node which possesses the largest subset
template with respect to I, or I cannot activate any F2 node. In the latter case, F2 contains
no uncommitted nodes.

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 3

This theorem guarantees that a memorized pattern activates an F2 node at once after
learning and that all F2 nodes have been already committed if any input patterns cannot
be coded. If an input pattern list contains many different input patterns and F2 contains
fewer nodes, all input patterns cannot be coded with ρ close to 1.

However, the theorem doesn’t guarantee that an input pattern having activated an F2
node during learning should have been coded. If there are many input patterns with
respect to the number of F2 nodes, input patterns which have smaller |X1| tend to be
coded while input patterns with larger | X1| tend to be coded by their subsets or not coded
at all after learning.

8.3 Model Implementation
The complete model incorporates the Attentional and Orient Subsystem into a single Art
module, as shown in figure 8.4, together with the ArtModel instantiating the Art module
with the appropriate sizes for its layers.

Recognition
f2

Comparison
f1

Art

s

matI

matX

in

in

s

x

x

Figure 8.4��

ART module containing the F2
and F2 submodules incorpo-
rating the functionality of both
the Attentional and Orienting
subsystems.

Art Module
Due to the limited process complexity of some of the components of the model only two
submodules F1 and F2 are defined within the Art module. These two submodules corre-
spond to layers F1 and F2 in the Attentional subsystem and include their respective
gains. Also considering the simplicity of the orienting subsystem structures, it is incorpo-
rated directly into module F1.

Every simulation run initialization, corresponding to the beginning of a new epoch, a
new input pattern is sent to the F1 and F2 input vector ports in. Since the input ports in
is a vector and matI is a matrix we do a corresponding conversion between the two.

public void initRun() {

 matrixToVector(matI,in);

}

After completing a simulation run the endRun method is called, in this case we want
to update the matX array in order to display to the user the letter output in a visually
appropriate form.

public void endRun() {

 vectorToMatrix(x,matX);

}

1 6 4 C H A P T E R 8

Comparison Module
The Comparison module contains the corresponding data structure for the F1 layer
including gain 1. Input layer s and activity layer x are both initialized to 0 while weights
are initialized 1.0. This is all done in the initModule method. The initTrain method
resets the active elements. Simulation processing is specified in the simTrain method as
follows

public void simTrain() {

 if (resetActive == 1) { // input vector G1 condition, eq

(8.1)

 resetActive = 0;

 active = -1;

 x = in;

 }

 else { // eq (8.7)

 if (s.nslMax() > 0)

 s.nslMax(active);

 v = w*s; // eq (8.6)

 // this is a step function: x=nslStep(in+s,1.99)

 for (int i = 0;i < in.getSize();i++) {

 if (in[i] + v[i] >= 1.99)

 x[i] = 1.0;

 else

 x[i] = 0.0;

 }

 }

}

This module executes the bottom-up activation, the top-down template matching, and the
STM reset and search. The activation cycle is repeated until matching is complete.

After running a complete simulation for a single pattern the endTrain method gets
called. The module changes the LTM traces F12 and F21 after the system reaches stable
responding to an input pattern. This modifies bottom-up and top-down traces F12 and
F21 by the fast learning equations. The LTM learning module may be turned off when
learning is unnecessary.

public void endTrain() {

 s.nslMax(active); // eq. (8.9)

 for (int i = 0;i < w.getRows();i++) {

 if (x[i] == 1.0)

 w[i][active] = 1.0;

 else

 w[i][active] = 0.0;

 }

}

Recognition Module
The Recognition module contains the corresponding data structures for the F2 layer.
Simulation variables are initialized in the initModule method as follows:

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 5

public void initModule() {

// initialization of all LTM weights // eq (8.10)

 float max_value = l.getData()/(l.getData() - 1.0 +

 in.getSize());

 for (int xi = 0; xi < w.getRows(); xi++) {

 for (int yi = 0; yi < w.getCols(); yi++) {

 w[xi][yi] = uniformRandom(float(0.0),max_value);

 }

 }

}

The initTrain method resets the active elements. Simulation processing is specified
in the simTrain method where LTM traces are multiplied to the input from F1 and F2
activation x is computed. The F2 unit that receives the biggest input from F1 that has not
been reset is activated while the other units are deactivated.

public void simTrain() {

 if (s.nslSum() / in.nslSum() < rho.getData()) { // eq (8.8)

 resetY[active] = -1.0;

 active = -1;

 }

 if (active >= 0) {

 nslPrintln(“Matching is passed”);

 system.breakCycle();

 return;

 }

 v = w*s; // eq (8.6)

 num_type maxvalue;

 int i;

 active = -1;

 x = 0.0;

 float BIG_MINUS = -1.0; // the smallest value in this

 program

 // To exclude units which have been already reset

 for (i = 0;i < resetY.getSize();i++) {

 if (resetY[i] == -1.0) {

 v[i] = BIG_MINUS;

 }

 }

 // search for the unit which receives maximum input

 maxvalue = v.nslMax();

 // In the case that there is no available unit

 if (maxvalue == BIG_MINUS) {

 active = -1;

 nslPrint(“An error has occured”);

 system.breakCycle();

 return;

 }

1 6 6 C H A P T E R 8

 // To find the maximum input // eq (8.5)

 for (i = 0;i < v.getSize();i++) {

 if (v[i] == maxvalue) {

 x[i] = 1.0;

 active = i;

 break;

 }

 }

 // For the error

 if (i >= v.getSize()) {

 nslPrintln(“An error has occured”);

 system.breakCycle();

 return;

 }

 if (active < 0) {

 nslPrintln(“There are no available units”);

 system.breakCycle();

 return;

 }

}

After running a complete simulation for a single pattern the endTrain method gets
called.

public void endTrain() {

 nslPrintln(“Top-Down Template Unit:” ,active);

 if (active < 0) {

 nslPrintln(“There are no units for this input”);

 system.breakCycle();

 return;

 }

 float val = l.getData() / (l.getData() - 1.0 + s.sum()); //

 eq (8.11)

 for (int i = 0; i < w.getCols(); i++) {

 if (s[i] == 1.0)

 w[active][i] = val;

 else

 w[active][i] = 0.0;

 }

}

8.4 Simulation and Results2
The ART1 model simulation will be illustrated with character recognition example
(Carpenter and Grossberg, 1987). The NSLS command file ART1.nsls contains NSL
command to set parameters and prepare graphics. The parameters to be set are only the
vigilance parameter and the weight initialization parameter besides the usual simulation
steps specification.

nsl set art.f2.rho 0.7

nsl set art.f2.l 2.0

The system may run without learning by setting the epoch steps to 0.

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 7

A window frame with two windows inside corresponding to the input vector and F1
activation pattern X, both shown as a square pattern, are opened in the simulation. A sec-
ond frame with a single window shows the F2 activation pattern X. The latter layer is
shown as a vector representing a group of classified categories.

Execution
A typical ART1 simulation session is as follows;

1. Loading ArtModel.nsl: “nsl source artModel.nsl.”

2. Initialization: Execute the NSL command “nsl init.” This initializes LTM traces and
variables.

3. Setting character: Characters may be interactively fed by the user or read from a
script file. For example read the “nsl source patI1.nsl” file for a single letter.

4. Activation and Learning: Type “nsl train” to train a single cycle of the Art model.
After either the maximum number of simulation steps are executed or X2 stabilizes,
endTrain is executed. Learning may be disabled, only by setting the epoch step
number to 1.

Input

1

2

3

4

5

6

7

I2 I3 I4 V1

V1

V1

V1

V1

V2

V2

V2

V2

I1 Active

Figure 8.5�

Four two-dimensional 5 by 5
(I1, I2, I3 and I4) patterns are
presented to the ART1 system.
The correct output is specified
by the active V element.

Output
We give a simple simulation example in this section. Four input patterns are presented to
the model for a total of seven times. The input patterns, the F2 nodes activated by them,
and top-down template of the activated F2 nodes are shown in figure 8.5.

5. An input pattern I1 is given in the first presentation. Because no patterns have been
memorized yet, the input pattern is completely learned by an F2 node n1 and the top-
down template of n1 is I1 after learning.

6. An input pattern I2 is then given. Because I2 is a subset of I1, I2 directly activates the
same F2 node n1, and I2 becomes a new template of n1.

1 6 8 C H A P T E R 8

7. The input pattern I1 is presented again in the third trial. The F2 node n1 is activated at
first, but it is reset because its template pattern I2 and the input pattern I1 are very
different. Thus, another F2 node n2 is activated and I1 becomes its template.

8. An input pattern I3 is given in the fourth presentation. Though I3 looks closer to I1
than I2, I3 directly accesses n1 and the activated pattern on F1 is I2. The top-down
template of n1 doesn’t change and it is still I2.

9. The next input pattern I4 activates n1 because I4 is a subset of the current template I2
of n1. Then, the template of n1 becomes I4 instead of I2.

10. Next, the input pattern I3 is given again. It activates n1 at first, but it is reset because
its current template I4 and I3 are very different. Thus, I3 activates the F2 node n2 at
the second search, and it becomes the template of the node.

11. Finally, the input pattern I1 is given again. It directly activates the F2 node n2 and the
activated pattern on F1 is I3.

The NSL simulation displays for the V elements are shown in figure 8.6.

Figure 8.6
V elements in the recognition
module of the ART1 system.

The NSL simulation displays comparing the letter input to the corresponding output
is shown in figure 8.7. The above example illustrates some of the features of the model:

• An F2 node that memorizes an input pattern will not necessarily keep memorizing it.
Though the F2 node n1 first memorizes the input pattern I1 in the above simulation,
for example, the node doesn’t respond to I1 in the final presentation. This means that
the final stable state of the model may be largely different from early stages.

• Simpler patterns which have smaller |I|’s tend to be learned. Thus, when the number
of the F2 nodes are limited, complex patterns may not be learned. Skilled adjustment
of a vigilance parameter is indispensable for balanced learning.

• The criterion to classify input patterns is not intuitive. For example, the input pattern
I3 is judged closer to I2 than I1.

• The previous top-down template n presented as an input pattern is not necessarily the
final activation pattern on F1. This means that the model cannot restore pixels erased
by noise though it can remove pixels added by noise.

• These features may be flaws of the model, but they can be taken also as good points.

8.5 Summary
Though we chose a simplified way to simulate ART1 on NSL, some interesting features
of ART1 have been made clear. Different extensions can be made to the NSL implemen-
tation of ART1:

• The first extension would be a full implementation of ART1 original dynamic equa-
tions, in particular the inclusion of membrane potential equations of F1 and F2 nodes
and the slow learning equations.

• The second extension would be to improve ART1. Some features present in our
simulation are not desirable for many applications. We believe some improvements
of the learning equations and matching rules would extend to further applications
while keeping the basic structure of ART.

A D A P T I V E R E S O N A N C E T H E O R Y 1 6 9

The third extension would be the implementation of other ART models. ART is a
theory applying to many models, such as ART2, FUZZY-ART (Carpenter et al 1991),
besides various practical applications.

A good exercise here would be to use the Maximum Selector model instead of the
simple WTA used in ART.

Figure 8.7�

Sample letter input and output
in the ART1 system.

Notes

1. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by T. Tanaka as well as contributed Section 8.3 and part of
Section 8.4 to this chapter.

2. The Art model was implemented and tested under NSLC.

