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8.1 Introduction 
The adaptive resonance theory (ART) has been developed to avoid the stability-plasticity 
dilemma in competitive networks learning. The stability-plasticity dilemma addresses 
how a learning system can preserve its previously learned knowledge while keeping its 
ability to learn new patterns. ART architecture models can self-organize in real time pro-
ducing stable recognition while getting input patterns beyond those originally stored. 

ART is a family of different neural architectures. The first and most basic architec-
ture is ART1 (Carpenter and Grossberg, 1987). ART1 can learn and recognize binary 
patterns. ART2 (Carpenter and Grossberg, 1987) is a class of architectures categorizing 
arbitrary sequences of analog input patterns. ART is used in modeling such as invariant 
visual pattern recognition (Carpenter et al 1989) where biological equivalence is dis-
cussed (Carpenter and Grossberg 1990). 

An ART system consists of two subsystems, an attentional subsystem and an orient-
ing subsystem. The stabilization of learning and activation occurs in the attentional sub-
system by matching bottom-up input activation and top-down expectation. The orienting 
subsystem controls the attentional subsystem when a mismatch occurs in the attentional 
subsystem. In other words, the orienting subsystem works like a novelty detector.  

An ART system has four basic properties. The first is the self-scaling computational 
units. The attentional subsystem is based on competitive learning enhancing pattern fea-
tures but suppressing noise. The second is self-adjusting memory search. The system can 
search memory in parallel and adaptively change its search order. Third, already learned 
patterns directly access their corresponding category. Finally, the system can adaptively 
modulate attentional vigilance using the environment as a teacher. If the environment 
disapproves the current recognition of the system, it changes this parameter to be more 
vigilant.  

There are two models of ART1, a slow-learning and a fast-learning one. The slow 
learning model is described by in terms of differential equations while the fast learning 
model uses the results of convergence in the slow learning model. In this chapter we will 
not show a full implementation on ART1, instead an implementation of the fast learning 
model will be more efficient and sufficient to show the ART1 architecture behavior. 

8.2 Model Description 
ART1 is the simplest ART learning model specifically designed for recognizing binary 
patterns. The ART1 system consists of an attentional subsystem and an orienting subsys-
tem as shown in figure 8.1.  
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Figure 8.1 �
ART1 consists of an atten-
tional subsystem and an 
orienting subsystem. The 
attentional subsystem has two 
short term memory (STM) 
stages, F1 and F2. Long term 
memory (LTM) traces 
between F1 and F2 multiply 
the signal in these pathways. 
Gain control signals enable 
F1 and F2 to distinguish 
current stages of a running 
cycle. STM reset wave inhib-
its active F2 cells when mis-
matches between bottom-up 
and top-down signals occur 
at F1. 

The attentional subsystem consists of two competitive networks, the comparison 
layer F1 and the recognition layer F2, and two control gains, Gain 1 and Gain 2. The ori-
enting subsystem contains the reset layer for controlling the attentional subsystem overall 
dynamics. 

The comparison layer receives the binary external input passing it to the recognition 
layer responsible for matching it to a classification category. This result is passed back to 
the comparison layer to find out if the category matches that of the input vector. If there 
is a match a new input vector is read and the cycle starts again. If there is a mismatch the 
orienting system is in charge of inhibiting the previous category in order to get a new 
category match in the recognition layer. The two gains control the activity of the recog-
nition and comparison layer, respectively. 

A processing element x1i in layer F1 is shown in figure 8.2.  

Unit x1i 
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To Orient 
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Figure 8.2 �
A processing unit x1i in F1 
receives input from: pattern Ii, 
gain control signal G1 and V1i 
equivalent to output X2j from 
F2 multiplied by interconnec-
tion weight E21ij. The local 
activity serving also as unit 
output is X1i. 

The excitatory input to x1i in layer F1 comes from three sources: (1) the external 
input vector Ii, (2) the control gain G1and (3) the internal network input V1i made of the 
output from F2 multiplied appropriate connections weights. There is no inhibitory input 
to the neuron. The output of the neuron is fed to the F2 layer as well as the orient sub-
system. 
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A processing element x2j in layer F2 is shown in figure 8.3.  
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Figure 8.3��

A processing element x2j in 
F2 receives input from: gain 
control signal G2 and V2j 
equivalent to output X1i from 
F1 multiplied by intercon-
nection weight W12ji. The 
local activity is also the unit 
output X2j. 

The excitatory input to x2j in F2 comes from three sources: (1) the orient subsystem, 
(2) the control gain G2 and (3) the internal network input V2j made of the output from F1 
multiplied appropriate connections weights. There is no inhibitory input to the neuron. 
The output of the neuron is fed to the F1 layer as well as the Gain 1 control. 

The original dynamic equations (Carpenter and Grossberg 1987) handle both binary 
and analog computations. We shall concentrate here on the binary model. Processing in 
ART1 can be divided into four phases, (1) recognition, (2) comparison, (3) search, and 
(4) learning.  

Recognition 
Initially, in the recognition or bottom-up activation, no input vector I is applied disabling 
all recognition in F2 and making the two control gains, G1 and G2, equal to zero. This 
causes all F2 elements to be set to zero, giving them an equal chance to win the subse-
quent recognition competition. When an input vector is applied one or more of its compo-
nents must be set to one thereby making both G1 and G2 equal to one.  

Thus, the control gain G1 depends on both the input vector I and the output X2 from 
F2, 



 =≠

=
otherwise0

0 and 0  if1 2
1

XI
G  (8.1) 

In other words, if there is an input vector I and F2 is not actively producing output, 
then G1 = 1. Any other combination of activity on I and F2 would inhibit the gain control 
from exciting units on F1. 

On the other hand, the output G2 of the gain control module depends only on the 
input vector I, 



 ≠

=
otherwise0

 0  if1
2

I
G   (8.2) 

In other words, if there exists an input vector then G2 = 1 and recognition in F2 is 
allowed.  

Each node in F1 receiving a nonzero input value generates an STM pattern activity 
greater than zero and the node’s output is an exact duplicate of input vector. Since both 
X1i and Ii are binary, their values would be either 1 or 0,  

X1 = I, if G1 = 1  (8.3) 
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Each node in F1 whose activity is beyond the threshold sends excitatory outputs to 
the F2 nodes. The F1 output pattern X1 is multiplied by the LTM traces W12 connecting 
from F1 to F2. Each node in F2 sums up all its LTM gated signals 

∑=
i

jiij WXV 1212  (8.4) 

These connections represent the input pattern classification categories, where each 
weight stores one category. The output X2j is defined so that the element that receives the 
largest input should be clearly enhanced. As such, the competitive network F2 works as a 
winner-take-all network described by.  

{ }


 ∀=∩=

=
otherwise0

k max  1 if1 22j2
2

k
kj

VVG
X   (8.5) 

The F2 unit receiving the largest F1 output is the one that best matches the input 
vector category, thus winning the competition. The F2 winner node fires, having its value 
set to one, inhibiting all other nodes in the layer resulting in all other nodes being set to 
zero. 

Comparison 
In the comparison or top-down template matching, the STM activation pattern X2 on F2 
generates a top-down template on F1. This pattern is multiplied by the LTM traces W12 

connecting from F2 to F1. Each node in F1 sums up all its LTM gated signals 

∑=
j

ijji WXV 2121   (8.6) 

The most active recognition unit from F2 passes a one back to the comparison layer 
F1. Since the recognition layer is now active, G1 is inhibited and its output is set to zero.  

 
In accordance with the “2/3” rule, stating that from three different input sources at 

least two are required to be active in order to generate an excitatory output, the only com-
parison units that will fire are those that receive simultaneous ones from the input vector 
and the recognition layer. Units not receiving a top down signal from F2 must be inactive 
even if they receive input from below. This is summarized as follows 


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 =∩

=
otherwise0

11 1
1

ii
i
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X   (8.7) 

If there is a good match between the top-down template and the input vector, the sys-
tem becomes stable and learning may occur.  

If there is a mismatch between the input vector and the activity coming from the rec-
ognition layer, this indicates that the pattern being returned is not the one desired and the 
recognition layer should be inhibited.  

Search 
The reset layer in the orienting subsystem measures the similarity between the input 
vector and the recognition layer output pattern. If a mismatch between them, the reset 
layer inhibits the F2 layer activity. The orienting systems compares the input vector to 
the F1 layer output and causes a reset signal if their degree of similarity is less than the 
vigilance level, where ρ is the vigilance parameter set as 0 < ρ  ≤ 1. 

The input pattern mismatch occurs if the following inequality is true, 

I

X1<ρ  (8.8) 
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If the two patterns differ by more than the vigilance parameter, a reset signal is sent 
to disable the firing unit in the recognition layer F2. The effect of the reset is to force the 
output of the recognition layer back to zero, disabling it for the duration of the current 
classification in order to search for a better match.  

The parameter ρ determines how large a mismatch is tolerated. A large vigilance 
parameter makes the system to search for new categories in response to small difference 
between I and X2 learning to classify input patterns into a large number of finer catego-
ries. Having a small vigilance parameter allows for larger differences and more input 
patterns are classified into the same category. 

When a mismatch occurs, the total inhibitory signal from F1 to the orienting subsys-
tem is increased. If the inhibition is sufficient, the orienting subsystem fires and sends a 
reset signal. The activated signal affects the F2 nodes in a state-dependent fashion. If an 
F2 node is active, the signal through a mechanism known as gated dipole field causes a 
long-lasting inhibition.  

When the active F2 node is suppressed, the top-down output pattern X2 and the top-
down template V1 are removed and the former F1 activation pattern X1 is generated again. 
The newly generated pattern X1 causes the orienting subsystem to cancel the reset signal 
and bottom-up activation starts again. Since F2 nodes having fired receive the long-
lasting inhibition, a different F2 unit will win in the recognition layer and a different 
stored pattern is fed back to the comparison layer. If the pattern once again does not 
match the input, the whole process gets repeated. . 

If no reset signal is generated this time, the match is adequate and the classification 
is finished. 

 
The above three stages, that is, recognition, comparison, and search, are repeated 

until the input pattern matches a top-down template X1. Otherwise a F2 node that has not 
learned any patterns yet is activated. In the latter case, the chosen F2 node becomes a 
learned new input pattern recognition category.  

Learning 
The above three stages take place very quickly relative to the time constants of the learn-
ing equations of the LTM traces between F1 and F2. Thus, we can assume that the 
learning occurs only when the STM reset and search process end and all STM patterns on 
F1 and F2 are stable.  

The LTM traces from F1 to F2 follow the equation  

( ) ( )
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where τ1 is the time constant and L is a parameter with a value greater than one. Because 
time constant τ is sufficiently larger than the STM activation and smaller than the input 
pattern presentation, the above is a slow learning equation that converges in the fast 
learning equation 
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The initial values for W12ij must be randomly chosen while satisfying the inequality 

0 < W12ij < 
ML

L

+−1
  (8.11) 

where M is the input pattern dimension equal to the number of nodes in F1.  
 
The LTM traces from F2 to F1 follows the equation, 

( )ijij
ji

XWX
dt

dW
1212

21
2 +−=τ  (8.12) 

where τ2 is the time constant and the equation is defined to converge during a presenta-
tion of an input pattern. Thus, the fast learning equation of the for W21ji is 





=
inactive is only  if0

active are  and  if1

1

11
21

i

ji
ji V

VV
W   (8.13) 

The initial value for W21ji must be randomly chosen to satisfy the inequality 

1 ≥ W21ji(0) > C  (8.14) 

where C is decided by the slow learning equation parameters. However, all W21ji(0) may 
be set 1 in the fast learning case. 

Theorems  
The theorems describing ART1 behavior are described next with proofs given in Carpen-
ter and Grossberg (1987). These theorems hold in the fast learning case with initial LTM 
traces satisfying constraints (10) and (14). If parameters are properly set, however, the 
following results also hold in the slow learning case. 

(Theorem 1) Direct Access of Learned Patterns 
If an F2 node has already learned input pattern I as its template, then input pattern I acti-
vates the F2 node at once. 

The theorem states that a pattern that has been perfectly memorized by an F2 node 
activates the node immediately. 

(Theorem 2) Stable Category Learning 
This theorem guarantees that the LTM traces W12ij and W21ji become stable after a finite 
number of learning trials in response to an arbitrary list of binary input patterns. The V1j 
template corresponding to the jth F2 node remains constant after at most M-1 times.  

In stable states, the LTM traces W12ij become L/(L-1+M) if the ith element of the top-
down template corresponding to the jth F2 node is one. Otherwise, it is zero. The LTM 
traces W21ji become one if the ith element of the template of corresponding to the jth F2 
node is one. Otherwise, it is zero. 

However, theorem 2 doesn’t guarantee that a perfectly coded input pattern by an F2 
node will be coded by the same F2 node after presentation. The F2 node may forget the 
input pattern in successive learning, though the template of the F2 node continues to be a 
subset of the input pattern. 

(Theorem 3) Direct Access after Learning Stabilizes 
After learning has stabilized in response to an arbitrary list of binary input patterns, each 
input pattern I either directly activates the F2 node which possesses the largest subset 
template with respect to I, or I cannot activate any F2 node. In the latter case, F2 contains 
no uncommitted nodes. 
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This theorem guarantees that a memorized pattern activates an F2 node at once after 
learning and that all F2 nodes have been already committed if any input patterns cannot 
be coded. If an input pattern list contains many different input patterns and F2 contains 
fewer nodes, all input patterns cannot be coded with ρ close to 1. 

However, the theorem doesn’t guarantee that an input pattern having activated an F2 
node during learning should have been coded. If there are many input patterns with 
respect to the number of F2 nodes, input patterns which have smaller |X1| tend to be 
coded while input patterns with larger | X1| tend to be coded by their subsets or not coded 
at all after learning.  

8.3 Model Implementation 
The complete model incorporates the Attentional and Orient Subsystem into a single Art 
module, as shown in figure 8.4, together with the ArtModel instantiating the Art module 
with the appropriate sizes for its layers. 

Recognition
f2

Comparison
f1

Art

s

matI

matX

in

in

s

x

x

 

Figure 8.4��

ART module containing the F2 
and F2 submodules incorpo-
rating the functionality of both 
the Attentional and Orienting 
subsystems. 

Art Module 
Due to the limited process complexity of some of the components of the model only two 
submodules F1 and F2 are defined within the Art module. These two submodules corre-
spond to layers F1 and F2 in the Attentional subsystem and include their respective 
gains. Also considering the simplicity of the orienting subsystem structures, it is incorpo-
rated directly into module F1. 

Every simulation run initialization, corresponding to the beginning of a new epoch, a 
new input pattern is sent to the F1 and F2 input vector ports in. Since the input ports in 
is a vector and matI is a matrix we do a corresponding conversion between the two. 

public void initRun() { 

 matrixToVector(matI,in);  

} 

After completing a simulation run the endRun method is called, in this case we want 
to update the matX array in order to display to the user the letter output in a visually 
appropriate form. 

public void endRun() { 

  vectorToMatrix(x,matX); 

} 
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Comparison Module 
The Comparison module contains the corresponding data structure for the F1 layer 
including gain 1. Input layer s and activity layer x are both initialized to 0 while weights 
are initialized 1.0. This is all done in the initModule method. The initTrain method 
resets the active elements. Simulation processing is specified in the simTrain method as 
follows 

public void simTrain() { 

 if (resetActive == 1) { // input vector G1 condition, eq  

(8.1) 

          resetActive = 0; 

      active = -1; 

   x = in; 

    } 

    else { // eq (8.7) 

  if (s.nslMax() > 0) 

      s.nslMax(active);    

         v = w*s; // eq (8.6) 

    // this is a step function: x=nslStep(in+s,1.99) 

  for (int i = 0;i < in.getSize();i++) { 

       if (in[i] + v[i] >= 1.99)  

        x[i] = 1.0; 

       else 

        x[i] = 0.0; 

       } 

    } 

} 

This module executes the bottom-up activation, the top-down template matching, and the 
STM reset and search. The activation cycle is repeated until matching is complete.  

After running a complete simulation for a single pattern the endTrain method gets 
called. The module changes the LTM traces F12 and F21 after the system reaches stable 
responding to an input pattern. This modifies bottom-up and top-down traces F12 and 
F21 by the fast learning equations. The LTM learning module may be turned off when 
learning is unnecessary. 

public void endTrain() { 

 s.nslMax(active); // eq. (8.9) 

     

     for (int i = 0;i < w.getRows();i++) { 

  if (x[i] == 1.0)  

       w[i][active] = 1.0; 

  else 

       w[i][active] = 0.0; 

   }    

} 

Recognition Module 
The Recognition module contains the corresponding data structures for the F2 layer. 
Simulation variables are initialized in the initModule method as follows: 
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public void initModule() { 

// initialization of all LTM weights // eq (8.10) 

     float max_value = l.getData()/(l.getData() - 1.0 +  

 in.getSize()); 

     for (int xi = 0; xi < w.getRows(); xi++) { 

  for (int yi = 0; yi < w.getCols(); yi++) { 

       w[xi][yi] = uniformRandom(float(0.0),max_value); 

  } 

    } 

} 

The initTrain method resets the active elements. Simulation processing is specified 
in the simTrain method where LTM traces are multiplied to the input from F1 and F2 
activation x is computed. The F2 unit that receives the biggest input from F1 that has not 
been reset is activated while the other units are deactivated. 

public void simTrain() { 

 if (s.nslSum() / in.nslSum() < rho.getData()) { // eq (8.8) 

   resetY[active] = -1.0; 

   active = -1; 

 } 

     if (active >= 0) { 

   nslPrintln(“Matching is passed”); 

   system.breakCycle(); 

   return; 

 } 

 v = w*s; // eq (8.6) 

 num_type maxvalue; 

 int  i; 

 active = -1; 

 x = 0.0; 

 float BIG_MINUS = -1.0; // the smallest value in this  

 program  

 // To exclude units which have been already reset 

 for (i = 0;i < resetY.getSize();i++) { 

  if (resetY[i] == -1.0) { 

       v[i] = BIG_MINUS; 

  } 

 } 

 // search for the unit which receives maximum input 

 maxvalue = v.nslMax(); 

 // In the case that there is no available unit 

 if (maxvalue == BIG_MINUS) { 

  active = -1; 

  nslPrint(“An error has occured”); 

  system.breakCycle(); 

  return; 

 } 
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 // To find the maximum input // eq (8.5) 

 for (i = 0;i < v.getSize();i++) { 

  if (v[i] == maxvalue) { 

    x[i] = 1.0; 

    active = i; 

    break; 

  } 

 } 

 // For the error 

 if (i >= v.getSize()) { 

   nslPrintln(“An error has occured”); 

   system.breakCycle(); 

   return; 

 } 

 if (active < 0) { 

   nslPrintln(“There are no available units”); 

   system.breakCycle(); 

   return; 

 } 

} 

After running a complete simulation for a single pattern the endTrain method gets 
called.  

public void endTrain() { 

 nslPrintln(“Top-Down Template Unit:” ,active); 

 if (active < 0) { 

   nslPrintln(“There are no units for this input”); 

  system.breakCycle(); 

  return; 

 } 

 float val = l.getData() / (l.getData() - 1.0 + s.sum()); // 

 eq (8.11) 

 for (int i = 0; i < w.getCols(); i++) { 

  if (s[i] == 1.0) 

   w[active][i] = val; 

  else  

   w[active][i] = 0.0; 

 } 

} 

8.4 Simulation and Results2 
The ART1 model simulation will be illustrated with character recognition example 
(Carpenter and Grossberg, 1987). The NSLS command file ART1.nsls contains NSL 
command to set parameters and prepare graphics. The parameters to be set are only the 
vigilance parameter and the weight initialization parameter besides the usual simulation 
steps specification. 

nsl set art.f2.rho 0.7 

nsl set art.f2.l 2.0  

The system may run without learning by setting the epoch steps to 0. 
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A window frame with two windows inside corresponding to the input vector and F1 
activation pattern X, both shown as a square pattern, are opened in the simulation. A sec-
ond frame with a single window shows the F2 activation pattern X. The latter layer is 
shown as a vector representing a group of classified categories. 

Execution  
A typical ART1 simulation session is as follows; 

1. Loading ArtModel.nsl: “nsl source artModel.nsl.” 

2. Initialization: Execute the NSL command “nsl init.” This initializes LTM traces and 
variables. 

3. Setting character: Characters may be interactively fed by the user or read from a 
script file. For example read the “nsl source patI1.nsl” file for a single letter. 

4. Activation and Learning: Type “nsl train” to train a single cycle of the Art model. 
After either the maximum number of simulation steps are executed or X2 stabilizes, 
endTrain is executed. Learning may be disabled, only by setting the epoch step 
number to 1. 

Input
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7

I2 I3 I4 V1

V1

V1

V1

V1

V2

V2

V2
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I1 Active

 

Figure 8.5�

Four two-dimensional 5 by 5 
(I1, I2, I3 and I4) patterns are 
presented to the ART1 system. 
The correct output is specified 
by the active V element. 

Output  
We give a simple simulation example in this section. Four input patterns are presented to 
the model for a total of seven times. The input patterns, the F2 nodes activated by them, 
and top-down template of the activated F2 nodes are shown in figure 8.5. 

5. An input pattern I1 is given in the first presentation. Because no patterns have been 
memorized yet, the input pattern is completely learned by an F2 node n1 and the top-
down template of n1 is I1 after learning.  

6. An input pattern I2 is then given. Because I2 is a subset of I1, I2 directly activates the 
same F2 node n1, and I2 becomes a new template of n1. 
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7. The input pattern I1 is presented again in the third trial. The F2 node n1 is activated at 
first, but it is reset because its template pattern I2 and the input pattern I1 are very 
different. Thus, another F2 node n2 is activated and I1 becomes its template.  

8. An input pattern I3 is given in the fourth presentation. Though I3 looks closer to I1 
than I2, I3 directly accesses n1 and the activated pattern on F1 is I2. The top-down 
template of n1 doesn’t change and it is still I2. 

9. The next input pattern I4 activates n1 because I4 is a subset of the current template I2 
of n1. Then, the template of n1 becomes I4 instead of I2.  

10. Next, the input pattern I3 is given again. It activates n1 at first, but it is reset because 
its current template I4 and I3 are very different. Thus, I3 activates the F2 node n2 at 
the second search, and it becomes the template of the node.  

11. Finally, the input pattern I1 is given again. It directly activates the F2 node n2 and the 
activated pattern on F1 is I3. 

The NSL simulation displays for the V elements are shown in figure 8.6. 

 

Figure 8.6 
V elements in the recognition 
module of the ART1 system. 

The NSL simulation displays comparing the letter input to the corresponding output 
is shown in figure 8.7. The above example illustrates some of the features of the model:  

•  An F2 node that memorizes an input pattern will not necessarily keep memorizing it. 
Though the F2 node n1 first memorizes the input pattern I1 in the above simulation, 
for example, the node doesn’t respond to I1 in the final presentation. This means that 
the final stable state of the model may be largely different from early stages. 

•  Simpler patterns which have smaller |I|’s tend to be learned. Thus, when the number 
of the F2 nodes are limited, complex patterns may not be learned. Skilled adjustment 
of a vigilance parameter is indispensable for balanced learning. 

•  The criterion to classify input patterns is not intuitive. For example, the input pattern 
I3 is judged closer to I2 than I1. 

•  The previous top-down template n presented as an input pattern is not necessarily the 
final activation pattern on F1. This means that the model cannot restore pixels erased 
by noise though it can remove pixels added by noise. 

•  These features may be flaws of the model, but they can be taken also as good points. 

8.5 Summary 
Though we chose a simplified way to simulate ART1 on NSL, some interesting features 
of ART1 have been made clear. Different extensions can be made to the NSL implemen-
tation of ART1:  

•  The first extension would be a full implementation of ART1 original dynamic equa-
tions, in particular the inclusion of membrane potential equations of F1 and F2 nodes 
and the slow learning equations. 

•  The second extension would be to improve ART1. Some features present in our 
simulation are not desirable for many applications. We believe some improvements 
of the learning equations and matching rules would extend to further applications 
while keeping the basic structure of ART. 
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The third extension would be the implementation of other ART models. ART is a 
theory applying to many models, such as ART2, FUZZY-ART (Carpenter et al 1991), 
besides various practical applications. 

A good exercise here would be to use the Maximum Selector model instead of the 
simple WTA used in ART. 

 

Figure 8.7�

Sample letter input and output 
in the ART1 system. 

 
 

Notes 

1. A. Weitzenfeld developed the NSL3.0 version from the original NSL2.1 model im-
plementation written by T. Tanaka as well as contributed Section 8.3 and part of 
Section 8.4 to this chapter. 

2. The Art model was implemented and tested under NSLC. 



 

 

 


